IAVA TUBE FORMATION — THE MAKINGS OF A CONTROVERSY
Findings from Studies on the Bandera Lava Field, New Mexico

Allen W. Hatheway
Woodward-McNeill & Associates

(Much of the data mentioned in this paper can be reviewed at length in the author's thesis,
available as mentioned in his list of references, and in: Hatheway, Allen W. and Herring, Alika K.
1970. Bandera Lava Tubes of New Mexico, and Lunar Implications. University of Arizona
Lunar and Planetary Laboratory Communications #152, Vol. 8, part 4, pp. 298-327.)

Observations made on active (mainly Hawaiian) and older lava fields (such as the Bandera of
New Mexico, Fig.s 4-1 through 4-4) have brought attention to the fact that there may be two
primary modes of lava tube formation. Conjecture as to these modes of formation stems directly
from the earliest description of lava tube formation (Wentworth and MacDonald, 1953) which is
opposed by a theory of formation set forth by Ollier and Brown (1965). This second work also
sets out the first succinct description of fluid lava as a habitat for forming lava tubes.

Since the only observations of lava tubes made while the process of formation is active are
those supporting the Wentworth and MacDonald view, many investigators hold resistance to the
concept of a ''mobile cylinder'' (Hatheway, 1971) as an extension of the Ollier-Brown work.

Wentworth and MacDonald, followed by several others, have actually seen lava tubes forming
from open channels. The mode of formation is simply one of development of a solidified crust, while
fluid flow continues beneath. Greeley has noted, in several publications, that his field observa-
tions tend to support this theory and that tubes so formed tend to migrate laterally and vertically ,
in sections over limited distances.

While the circumstances surrounding formation of tubes from open channels are fairly simple,
those responsible for tube development through mobile cylinders are more complex. In 1936,
R. L. Nichols proposed that lava flows move forward as a series of flow units. Ollier and Brown
(1965) clarified this concept with the added observation that the flow units are separated into
flow layers formed in shear, along planes of variable viscosity.

That differentiation by flow layering does exist has been noted by Lutton, Girucky, and Hunt
(1967), in which the flow layers were actually observed to constitute a relict internal cylindrical
flow structure within a single 61-m thick lava flow.

The crux of the problem of defining mode of lava tube formation lies in the question of the
existance of an open channel for distances of up to 35km (the longest distance yet reported for
a single lava tube; Undara Crater tube, Queensland, White, 1965, fig. 2, plate 2). Will the
roof-forming process produce a buried tube of this length?

As proposed by Hatheway (1971), a modified Ollier-Brown theory seems to adequately explain
the occurrence of the longer lava tubes (one km - plus). Although long lava tubes have not been
observed while forming, this theory is proposed to encompass all of the natural pocesses necessary
to produce the tubes; with all of their distinct features.

It is a well known fact that lava flows extend themselves by flow units, and from within these,
by smaller tongues of lava issuing forth from ruptures at the toes of flow units. The ruptures
occur when the hydrostatic head of the fluid interior exceeds the tensile strength of the cooling
basalt at the toe. Since tensile strength decreases markedly with temperature (Hatheway, 1971),
this level of hydrostatic stress is rather easily attained. As soon as the break forms, the con-
figuration of fluid flow soon stabilizes into a circular cross-section of equal shear stress between
the evacuating lava and the less-viscous host lava.

Now, with the development of a semi-stabilized supply source of more fluid lava just up-gradi-
ent from the toe, a mobile cylinder, or supply conduit, filled with fluid lava must be present to
continue to supply the effluent tongue. The theory proposed here holds that this mobile cylinder
naturally propagates in an up-hill direction, following the position of maximum gradient for the
flow unit (actually observed from lava tube traces on the Bandera flows). This generation of
fluid supply volume continues until the modile cylinder reaches the source area, or vent. At
this time the cylinder ceases to grow in length and merely snakes its way down through its own
conduit until, like a subway train, it has completely left the conduit (or enclosing sheath) and
has spilled out at the toe of the flow.

The result is an evacuated conduit....a tube formerly occupied by the mobile cylinder of
fluid lava.
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ELEVATION ABOVE MEAN SEA LEVEL {Meters}

the lava tubes.

BANDERA Lava TUBES

s
- .

Figure 4-6: Sinuous bends along the lava tube issuing from E| Calderon Crater. Four distinct tubes
(1 thru 4) branch from the subsidence pit (P). Collapse of tube number 4 is evidenced by S (straight-
sided collapse pits) and T (tensile failure producing a hole in the roof of the tube). (Ariz.fig.7-R)
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Figure 4-7: Gradient profiles of the Bandera lava tubes. (Ariz.fig.15)

Features observed on the Bandera and other basaltic lava fields of requisite chemistry and
flow gradients, strongly suggest that most of the present-day collapse damage came about imme-
diately after formation of the tubes (within a matter of weeks), before the host rocks cooled and
became sufficiently strong to resist the shear and tensile components of gravity forces surrounding

accompanied the eruptions.

Perhaps some of the damage was hastened by seismic tremors likely to have

At the present, data collected from numerous sites of lava tubes strongly suggest that these

features occur only in alkali and high-alumina basalts and over flow gradients ranging upward

from 4031', but no less than 0°35' (Fig. 4-7).

Characteristically the basalt associated with tubes

and depressions is crystal-damaged and porphyritic; the barren host rock of nearby flow units
devoid of depressions are finer grained and less damaged.

a mobile cylinder) equalizes shear forces around a circular section.

Velocity distribution in a newly formed lava tube (while occup'ied with full flow - or that of

Bends probably begin wher-

15



GENESIS OF LAVA TUBE COLLAPSES
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. A. As the flow advances, the outer surface cools and
solidifies, while the interior portions remain molten and fluid.

B. Hydrostatic pressure forces the molten interior against the
immobile crust at the flow front, forming new flow units and
draining lava from the interior.

C. Evacuation of lava creates a mobile cylinder of lava shear-
ing a contact with the surrounding, more viscous lavas.

D. Differential cooling generates vertical joints which intersect
the horizontal planes formed by laminar flow within the mas-
sive lava flow.

E. Joint cracks moving from the surface downward reach the
upper surface of the tube and when contraction in the hori-
zontal direction is sufficient, blocks begin to spall from the
roof of the tube. Some plastic deformation may also occur
along the upper interior surface of the tube. Shear planes may
develop along the lower interior surface in areas in which
heat dissipation has occurred to a lesser degree and where the
rock may still be plastic.

F. Primary (A) and secondary (B) tensile fractures form in
the roof arch and begin to outline a peripheral failure of the
tube.

G. Final failure occurs along primary tensile fractures and
the cycle is complete. The process may be assisted by seismic
activity of a volcanic nature.
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H. OR: Plastic deflection of the roof area results in deforma-
tion of the tube cross section.

1. Spalling then occurs.

J. The tube is filled with rubble and tilted slabs of basalt. In
some instances this rubble fills the collapse pit to a point
above the original roof line and the lava tube is made inac-
cessible.

K. Cave-like recesses found at the ends of many collapse pits
along the lava tubes.

L. Diagrammatic cross-section of the channel on the Bandera
Crater lava tube S of the crater. (See also Fig. 17.)

M. Diagrammatic cross-section of the Hoyo del Infierno sub-
sidence pit. The interior of the pit is now largely covered with
aa lava extruded through fissure vents and tensile cracks onto
a surface of tilted pahoehoe slabs. (See also Figs. 25A and B.)

Figure 4-8: Genesis of lava tube collapse. Ariz.fig.16)

ever anomalously large pockets of equally viscous lava exist. As the pocket is mobilized in

flow, continued flow erodes the section preferentially.

Young's modulus decreases radically with increasing temperature. The stability of a newly-
formed lava tube depends upon its ability to resist the tensile and shear components of body forces
surrounding the tube. Data were curve-fit and used in a thermoelastic stress analysis program.

Workers such as Murase have observed that lavas maintain an essentially linear structure
elasticity for short periods of time at high temperatures. The thermoelastic stress analysis
assumed linearity of elastic properties over the short time periods utilized in the analysis.

Typical shear surfaces formed by body stresses surrounding lava tubes were observed on
the Amboy lava field of California and the McCartys flow of the Bandera lava field. There is
a clear-cut transition between the tensile breaks of cooler origin near the surface, and shear at
a depth of about one meter. Changes in surface character denote the temperature-dependent
nature of tensile and shear failures in hot lava. ‘
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Thermoelastic stress analysis showed that preferential shear and tensile failure occur just
outside the periphery of the tube, from roughly the horizontal centerline upward into the lower
half of the upper quadrants. Profiles vary considerably along short reaches of many lava tubes.
Such variations attest to plastic deformation short of elastic failure, closely following formation
of the lava tube.

Wide tensile fractures, extending three to five meters in depth, parallel the collapse features
overlying many lava tubes (Fig.4-8). Omne nearly continuous fracture circumscribes each
collapse in the McCartys basalt, Bandera lava field. Concentrations of tensile and shear stress
in the host basalt immediately surrounding the tube result in a failure of the basalt, which is
weak by virtue of its temperature, and formation of collapse depressions aligned along the trace
of individual lava tubes. Detailed topographic mapping of a single collapse depression formed
over a lava tube in the McCartys basalt showed a complex arrangement of peripheral tensile
fractures denoting that the basalt failed in tension at the surface. Regardless of length of tube,
the ellipticity (or length to width ratio) of collapsed segments of lava tubes remains fairly similar
(Fig.4-9 ). The cumulative collapse area of pits along lava tubes shows the general effect of
a thinning flow unit thickness as distance from source increases (Fig. 4-10).

Stratigraphic relationships and detailed lava-tube mapping at several locations in California
and New Mexico have failed to substantiate that the longer tubes were formed in the alternative
channel-and-fill mode.



Two theories thus have appeared which propose to account for the origin of lava tubes. The
first of these, by Wentworth and MacDonald (1953) has been cited frequently in the past few years
by several workers in lava tube research. The Wentworth-MacDonald theory is held by Hatheway
(1971b) to constitute a valid explanation for formation of lava tubes less than about one kilometer
in length. The theory calls for roofing by spatter and agglutination from lava flowing in open
channels.

For the longer lava tubes, a compatible theory was developed by Ollier and Brown (1965)
from basic observations of Nichols (1936). This concept has been modified to suit close field
observations (Hatheway, 1971) and is herein proposed as a likely mode of formation for almost
all lava tubes greater than about one kilometer in length.

The importance of a discussion of the two theories is that field observations of active basalt-
ic eruptions, and those made on quiescent Holocene lava fields, suggest that the two theories
are quite compatible; each explaining tube formation under a respective length criterion.
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GEOLOGY OF LAVA TUBES IN LAVA BEDS NATIONAL MONUMENT, CALIFORNIA

Keith A. Howard
U.S. Geological Survey
Menlo Park, California 94025

READ IN ABSTRACT

Lava-tube systems in Lava Beds National Monument are among several that occur in young
basalt flows which flank the Medicine Lake Highlands volcano. Mammoth Crater was the source
for one tube system (including Heppe, Sentinel, and Dragonhead caves). This system includes
both 2 major tributary and numerous distributary tubes. The large tributary (now collapsed)
formed where lava ponded to one side of the main tube before draining it into subsurface. More
typically the main channel fed numerous distributary conduits. Complexly branching distributary
tubes at the monument headquarters are unusually well drained, evidently the result of a high
gradient. The main channel in this area of high gradient (Crystal and Sentinel Caves) is narrow
and deep and evidently carried a high rate of flow as suggested by evidence of high-velocity gas
streaming above the lava river. Modoc Crater was the source of another lava large tube, whose
uncollapsed segments include Bearpaw, Skull, Frozen River, Fossil, and Fern caves. This
was a single channel throughout most of its 15-km length. Unusual features of this tube are a low
gradient (less than 0. 39 at the downstream end), and a series of collapsed blisters that form
non-explosive craters with high outward-toppled rims. Like the Mammoth Crater tube, this tube
generally is deeper than wide, is multistoried, has a thick roof, and is enclosed in several flow
units. These complexities, which are typical of large tubes, originated by such mechanisms
as successive lava overflow and levee building before the roof completely formed, non-uniform
accretion on the tube walls, and local erosion into underlying materials. Except for small features
in the tube lining, most layering exposed by tube collapse is believed to represent superposed
flow units and not shear layers within the flow.
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